Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
Front Microbiol ; 14: 1155624, 2023.
Article in English | MEDLINE | ID: covidwho-20241277

ABSTRACT

Introduction: Our research group and others demonstrated the implication of the human endogenous retroviruses (HERVs) in SARS-CoV-2 infection and their association with disease progression, suggesting HERVs as contributing factors in COVID-19 immunopathology. To identify early predictive biomarkers of the COVID-19 severity, we analyzed the expression of HERVs and inflammatory mediators in SARS-CoV-2-positive and -negative nasopharyngeal/oropharyngeal swabs with respect to biochemical parameters and clinical outcome. Methods: Residuals of swab samples (20 SARS-CoV-2-negative and 43 SARS-CoV-2-positive) were collected during the first wave of the pandemic and expression levels of HERVs and inflammatory mediators were analyzed by qRT-Real time PCR. Results: The results obtained show that infection with SARS-CoV-2 resulted in a general increase in the expression of HERVs and mediators of the immune response. In particular, SARS-CoV-2 infection is associated with increased expression of HERV-K and HERV-W, IL-1ß, IL-6, IL-17, TNF-α, MCP-1, INF-γ, TLR-3, and TLR-7, while lower levels of IL-10, IFN-α, IFN-ß, and TLR-4 were found in individuals who underwent hospitalization. Moreover, higher expression of HERV-W, IL-1ß, IL-6, IFN-α, and IFN-ß reflected the respiratory outcome of patients during hospitalization. Interestingly, a machine learning model was able to classify hospitalized vs not hospitalized patients with good accuracy based on the expression levels of HERV-K, HERV-W, IL-6, TNF-a, TLR-3, TLR-7, and the N gene of SARS-CoV-2. These latest biomarkers also correlated with parameters of coagulation and inflammation. Discussion: Overall, the present results suggest HERVs as contributing elements in COVID-19 and early genomic biomarkers to predict COVID-19 severity and disease outcome.

2.
J Pers Med ; 13(5)2023 Apr 28.
Article in English | MEDLINE | ID: covidwho-20234711

ABSTRACT

Adults and children exhibit a broad range of clinical outcomes from SARS-CoV-2 infection, with minimal to mild symptoms, especially in the pediatric age. However, some children present with a severe hyperinflammatory post-infectious complication named multisystem inflammatory syndrome in children (MIS-C), mainly affecting previously healthy subjects. Understanding these differences is still an ongoing challenge, that can lead to new therapeutic strategies and avoid unfavorable outcomes. In this review, we discuss the different roles of T lymphocyte subsets and interferon-γ (IFN-γ) in the immune responses of adults and children. Lymphopenia can influence these responses and represent a good predictor for the outcome, as reported by most authors. The increased IFN-γ response exhibited by children could be the starting point for the activation of a broad response that leads to MIS-C, with a significantly higher risk than in adults, although a single IFN signature has not been identified. Multicenter studies with large cohorts in both age groups are still needed to study SARS-CoV-2 pathogenesis with new tools and to understand how is possible to better modulate immune responses.

3.
Le infezioni in medicina ; 31(1):1-5, 2022.
Article in English | EuropePMC | ID: covidwho-2249595

ABSTRACT

SUMMARY The development and use of messenger RNA-based (mRNA) vaccines against the SARS-CoV-2 spike protein have proven to be highly effective against symptomatic COVID-19, especially for severe forms. Since the declaration of a public health emergency in early 2020, however, the SARS-CoV-2 virus has continuously evolved, giving rise to several variants that have caused and continue to cause concern in the scientific community. Currently, viruses circulating worldwide belong to the Omicron lineage, with several identified sub-variants. In response to virus mutation, mRNA vaccines have been adapted into bivalent vaccines containing two mRNAs: one encoding the original Wuhan SARS-CoV-2 spike protein and one encoding the BA.1 or BA.4–5 spike protein of the Omicron sub-variant. This strategy is based on the hypothesis that the immune system's response improves when variants are included in the vaccine, leading to an increase in the magnitude and diversity of both the humoral and cellular immune response. The evidence gathered to date confirms the use of bivalent vaccines as the optimal strategy. In the light of current knowledge, and in the awareness of the impossibility of making precise predictions on the evolution of the COVID-19 pandemic, as a group of experts we propose some considerations for the progressive evolution of vaccination against SARS-CoV-2 from pandemic to endemic vaccination.

4.
International immunopharmacology ; 2023.
Article in English | EuropePMC | ID: covidwho-2278264

ABSTRACT

Graphical abstract The peculiar property of Thymosin alpha 1 (Tα1) to act as master regulator of immune homeostasis has been successfully defined in different physiological and pathological contexts ranging from cancer to infection. Interestingly, recent papers also demonstrated its mitigating effect on the "cytokine storm” as well as on the T-cell exhaustion/activation in SARS-CoV-2 infected individuals. Nevertheless, in spite of the increasing knowledge on Tα1-induced effects on T cell response confirming the distinctive features of this multifaceted peptide, little is known on its effects on innate immunity to SARS-CoV-2 infection. Here, we interrogated peripheral blood mononuclear cell (PBMC) cultures stimulated with SARS-CoV-2 to disclose Tα1 properties on the main cell players of early response to infection, namely monocytes and myeloid dendritic cells (mDC). Moving from ex vivo data showing an enhancement in the frequency of inflammatory monocytes and activated mDC in COVID-19 patients, a PBMC-based experimental setting reproduced in vitro a similar profile with an increased percentage of CD16+ inflammatory monocytes and mDC expressing CD86 and HLA-DR activation markers in response to SARS-CoV-2 stimulation. Interestingly, the treatment of SARS-CoV-2-stimulated PBMC with Tα1 dampened the inflammatory/activation status of both monocytes and mDC by reducing the release of pro-inflammatory mediators, including TNF-α, IL-6 and IL-8, while promoting the production of the anti-inflammatory cytokine IL-10. This study further clarifies the working hypothesis on Tα1 mitigating action on COVID-19 inflammatory condition. Moreover, these evidence shed light on inflammatory pathways and cell types involved in acute SARS-CoV-2 infection and likely targetable by newly immune-regulating therapeutic approaches.

5.
Viruses ; 15(2)2023 01 27.
Article in English | MEDLINE | ID: covidwho-2278820

ABSTRACT

Arboviruses represent a public health concern in many European countries, including Italy, mostly because they can infect humans, causing potentially severe emergent or re-emergent diseases, with epidemic outbreaks and the introduction of endemic circulation of new species previously confined to tropical and sub-tropical regions. In this review, we summarize the Italian epidemiology of arboviral infection over the past 10 years, describing both endemic and imported arboviral infections, vector distribution, and the influence of climate change on vector ecology. Strengthening surveillance systems at a national and international level is highly recommended to be prepared to face potential threats due to arbovirus diffusion.


Subject(s)
Arbovirus Infections , Humans , Italy/epidemiology , Arbovirus Infections/epidemiology , Europe , Climate Change , Diffusion
6.
Int Immunopharmacol ; 117: 109996, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2278263

ABSTRACT

The peculiar property of Thymosin alpha 1 (Tα1) to act as master regulator of immune homeostasis has been successfully defined in different physiological and pathological contexts ranging from cancer to infection. Interestingly, recent papers also demonstrated its mitigating effect on the "cytokine storm" as well as on the T-cell exhaustion/activation in SARS-CoV-2 infected individuals. Nevertheless, in spite of the increasing knowledge on Tα1-induced effects on T cell response confirming the distinctive features of this multifaceted peptide, little is known on its effects on innate immunity during SARS-CoV-2 infection. Here, we interrogated peripheral blood mononuclear cell (PBMC) cultures stimulated with SARS-CoV-2 to disclose Tα1 properties on the main cell players of early response to infection, namely monocytes and myeloid dendritic cells (mDC). Moving from ex vivo data showing an enhancement in the frequency of inflammatory monocytes and activated mDC in COVID-19 patients, a PBMC-based experimental setting reproduced in vitro a similar profile with an increased percentage of CD16+ inflammatory monocytes and mDC expressing CD86 and HLA-DR activation markers in response to SARS-CoV-2 stimulation. Interestingly, the treatment of SARS-CoV-2-stimulated PBMC with Tα1 dampened the inflammatory/activation status of both monocytes and mDC by reducing the release of pro-inflammatory mediators, including TNF-α, IL-6 and IL-8, while promoting the production of the anti-inflammatory cytokine IL-10. This study further clarifies the working hypothesis on Tα1 mitigating action on COVID-19 inflammatory condition. Moreover, these evidence shed light on inflammatory pathways and cell types involved in acute SARS-CoV-2 infection and likely targetable by newly immune-regulating therapeutic approaches.


Subject(s)
COVID-19 , Thymosin , Humans , Thymalfasin/therapeutic use , Leukocytes, Mononuclear/metabolism , SARS-CoV-2/metabolism , Cytokines/metabolism , Inflammation/drug therapy , Thymosin/pharmacology , Thymosin/therapeutic use
7.
Int Immunopharmacol ; 118: 110055, 2023 May.
Article in English | MEDLINE | ID: covidwho-2272257

ABSTRACT

The complex alterations of the immune system and the immune-mediated multiorgan injury plays a key role in host response to SARS-CoV-2 infection and in the pathogenesis of COVID-19, being also associated with adverse outcomes. Thymosin alpha 1 (Tα1) is one of the molecules used in the treatment of COVID-19, as it is known to restore the homeostasis of the immune system during infections and cancer. The use of Tα1 in COVID-19 patients had been widely used in China and in COVID-19 patients, it has been shown to decrease hospitalization rate, especially in those with greater disease severity, and reduce mortality by restoring lymphocytopenia and more specifically, depleted T cells. Persistent dysregulation with depletion of naive B and T cell subpopulations and expansion of memory T cells suggest a chronic stimulation of the immune response in individuals with post-acute sequelae of SARS-CoV-2 infection (PASC). Our data obtained from an ex vivo study, showed that in PASC individuals with a chronically altered immune response, Tα1 improve the restoration of an appropriate response, most evident in those with more severe illness and who need respiratory support during acute phase, and in those with specific systemic and psychiatric symptoms of PASC, confirming Tα1 treatment being more effective in compromised patients. The results obtained, along with promising reports on recent trials on Tα1 administration in patients with COVID-19, offer new insights into intervention also for those patients with long-lasting inflammation with post-infectious symptoms, some of which have a delayed onset.


Subject(s)
COVID-19 , Thymosin , Humans , Thymalfasin/therapeutic use , Post-Acute COVID-19 Syndrome , SARS-CoV-2 , Lymphocytes , Homeostasis , Thymosin/therapeutic use
8.
EClinicalMedicine ; 57: 101895, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2271213

ABSTRACT

Background: Among interleukin-6 inhibitors suggested for use in COVID-19, there are few robust evidences for the efficacy of sarilumab. Herein, we evaluated the efficacy and safety of sarilumab in severe COVID-19. Methods: In this phase 3, open-labeled, randomized clinical trial, conducted at 5 Italian hospitals, adults with severe COVID-19 pneumonia (excluding mechanically ventilated) were randomized 2:1 to receive intravenous sarilumab (400 mg, repeatable after 12 h) plus standard of care (SOC) (arm A) or to continue SOC (arm B). Randomization was web-based. As post-hoc analyses, the participants were stratified according to baseline inflammatory parameters. The primary endpoint was analysed on the modified Intention-To-Treat population, including all the randomized patients who received any study treatment (sarilumab or SOC). It was time to clinical improvement of 2 points on a 7-points ordinal scale, from baseline to day 30. We used Kaplan Meier method and log-rank test to compare the primary outcome between two arms, and Cox regression stratified by clinical center and adjusted for severity of illness, to estimate the hazard ratio (HR). The trial was registered with EudraCT (2020-001390-76). Findings: Between May 2020 and May 2021, 191 patients were assessed for eligibility, of whom, excluding nine dropouts, 176 were assigned to arm A (121) and B (55). At day 30, no significant differences in the primary endpoint were found (88% [95% CI 81-94] in arm A vs 85% [74-93], HR 1.07 [0.8-1.5] in arm B; log-rank p = 0.50). After stratifying for inflammatory parameters, arm A showed higher probability of improvement than B without statistical significance in the strata with C reactive protein (CRP) < 7 mg/dL (88% [77-96] vs 79% [63-91], HR 1.55 [0.9-2.6]; log-rank p = 0.049) and in the strata with lymphocytes <870/mmc (90% [79-96]) vs (73% [55-89], HR 1.53 [0.9-2.7]; log-rank p = 0.058). Overall, 39/121 (32%) AEs were reported in arm A and 14/55 (23%) in B (p = 0.195), while serious AEs were 22/121 (18%) and 7/55 (11%), respectively (p = 0.244). There were no treatment-related deaths. Interpretation: The efficacy of sarilumab in severe COVID-19 was not demonstrated both in the overall and in the stratified for severity analysis population. Exploratory analyses suggested that subsets of patients with lower CRP values or lower lymphocyte counts might have had benefit with sarilumab treatment, but this finding would require replication in other studies. The relatively low rate of concomitant corticosteroid use, could partially explain our results. Funding: This study was supported by INMI "Lazzaro Spallanzani" Ricerca Corrente Linea 1 on emerging and reemerging infections, funded by Italian Ministry of Health.

9.
Infez Med ; 31(1): 1-5, 2022.
Article in English | MEDLINE | ID: covidwho-2249596

ABSTRACT

The development and use of messenger RNA-based (mRNA) vaccines against the SARS-CoV-2 spike protein have proven to be highly effective against symptomatic COVID-19, especially for severe forms. Since the declaration of a public health emergency in early 2020, however, the SARS-CoV-2 virus has continuously evolved, giving rise to several variants that have caused and continue to cause concern in the scientific community. Currently, viruses circulating worldwide belong to the Omicron lineage, with several identified sub-variants. In response to virus mutation, mRNA vaccines have been adapted into bivalent vaccines containing two mRNAs: one encoding the original Wuhan SARS-CoV-2 spike protein and one encoding the BA.1 or BA.4-5 spike protein of the Omicron sub-variant. This strategy is based on the hypothesis that the immune system's response improves when variants are included in the vaccine, leading to an increase in the magnitude and diversity of both the humoral and cellular immune response. The evidence gathered to date confirms the use of bivalent vaccines as the optimal strategy. In the light of current knowledge, and in the awareness of the impossibility of making precise predictions on the evolution of the COVID-19 pandemic, as a group of experts we propose some considerations for the progressive evolution of vaccination against SARS-CoV-2 from pandemic to endemic vaccination.

10.
PLoS One ; 18(3): e0282019, 2023.
Article in English | MEDLINE | ID: covidwho-2253790

ABSTRACT

INTRODUCTION: Healthcare-associated infections (HAIs) and antimicrobial resistance (AMR) are major public health threats in upper- and lower-middle-income countries. Electronic health records (EHRs) are an invaluable source of data for achieving different goals, including the early detection of HAIs and AMR clusters within healthcare settings; evaluation of attributable incidence, mortality, and disability-adjusted life years (DALYs); and implementation of governance policies. In Italy, the burden of HAIs is estimated to be 702.53 DALYs per 100,000 population, which has the same magnitude as the burden of ischemic heart disease. However, data in EHRs are usually not homogeneous, not properly linked and engineered, or not easily compared with other data. Moreover, without a proper epidemiological approach, the relevant information may not be detected. In this retrospective observational study, we established and engineered a new management system on the basis of the integration of microbiology laboratory data from the university hospital "Policlinico Tor Vergata" (PTV) in Italy with hospital discharge forms (HDFs) and clinical record data. All data are currently available in separate EHRs. We propose an original approach for monitoring alert microorganisms and for consequently estimating HAIs for the entire period of 2018. METHODS: Data extraction was performed by analyzing HDFs in the databases of the Hospital Information System. Data were compiled using the AREAS-ADT information system and ICD-9-CM codes. Quantitative and qualitative variables and diagnostic-related groups were produced by processing the resulting integrated databases. The results of research requests for HAI microorganisms and AMR profiles sent by the departments of PTV from 01/01/2018 to 31/12/2018 and the date of collection were extracted from the database of the Complex Operational Unit of Microbiology and then integrated. RESULTS: We were able to provide a complete and richly detailed profile of the estimated HAIs and to correlate them with the information contained in the HDFs and those available from the microbiology laboratory. We also identified the infection profile of the investigated hospital and estimated the distribution of coinfections by two or more microorganisms of concern. Our data were consistent with those in the literature, particularly the increase in mortality, length of stay, and risk of death associated with infections with Staphylococcus spp, Pseudomonas aeruginosa, Klebsiella pneumoniae, Clostridioides difficile, Candida spp., and Acinetobacter baumannii. Even though less than 10% of the detected HAIs showed at least one infection caused by an antimicrobial resistant bacterium, the contribution of AMR to the overall risk of increased mortality was extremely high. CONCLUSIONS: The increasing availability of health data stored in EHRs represents a unique opportunity for the accurate identification of any factor that contributes to the diffusion of HAIs and AMR and for the prompt implementation of effective corrective measures. That said, artificial intelligence might be the future of health data analysis because it may allow for the early identification of patients who are more exposed to the risk of HAIs and for a more efficient monitoring of HAI sources and outbreaks. However, challenges concerning codification, integration, and standardization of health data recording and analysis still need to be addressed.


Subject(s)
Anti-Infective Agents , Cross Infection , Humans , Artificial Intelligence , Cross Infection/epidemiology , Cross Infection/microbiology , Hospitals, University , Risk Factors
11.
Eur J Intern Med ; 2022 Oct 31.
Article in English | MEDLINE | ID: covidwho-2244177

ABSTRACT

OBJECTIVE: To evaluate whether the addition of colchicine to standard of care (SOC) results in better outcomes in hospitalized patients with COVID-19. DESIGN: This interventional, multicenter, randomized, phase 2 study, evaluated colchicine 1.5 mg/day added to SOC in hospitalized COVID-19 patients (COLVID-19 trial) and 227 patients were recruited. The primary outcome was the rate of critical disease in 30 days defined as need of mechanical ventilation, intensive care unit (ICU), or death. RESULTS: 152 non-anti-SARS-CoV-2-vaccinated patients (colchicine vs controls: 77vs75, mean age 69.1±13.1 vs 67.9±15 years, 39% vs 33.3% females, respectively) were analyzed. There was no difference in co-primary end-points between patients treated with colchicine compared to controls (mechanical ventilation 5.2% vs 4%, ICU 1.3% vs 5.3%, death 9.1% vs 6.7%, overall 11 (14.3%) vs 10 (13.3%) patients, P=ns, respectively). Mean time to discharge was similar (colchicine vs controls 14.1±10.4 vs 14.7±8.1 days). Older age (>60 years, P=0.025), P/F<275 mmHg (P=0.005), AST>40 U/L (P<0.001), pre-existent heart (P=0.02), lung (P=0.003), upper-gastrointestinal (P=0.014), lower-gastrointestinal diseases (P=0.009) and cancer (P=0.008) were predictive of achieving the primary outcome. Diarrhoea (9.1% vs 0%, p=0.0031) and increased levels of AST at 6 days (76.9±91.8 vs 33.5±20.7 U/l, P=0.016) were more frequent in the colchicine group. CONCLUSION: Colchicine did not reduce the rate and the time to the critical stage. Colchicine was relatively safe although adverse hepatic effects require caution. We confirm that older (>60 years) patients with comorbidities are characterized by worse outcome.

12.
Curr Med Res Opin ; 39(4): 505-516, 2023 04.
Article in English | MEDLINE | ID: covidwho-2231242

ABSTRACT

OBJECTIVE: Type 2 diabetes mellitus (T2DM) and impaired kidney function are associated with a higher risk of poor outcomes of coronavirus disease 2019 (COVID-19). We conducted a retrospective study in hospitalized T2DM patients with COVID-19 to assess the association between in-hospital mortality and admission values of different hematological/biochemical parameters, including estimated glomerular filtration rate (eGFR), plasma glucose and C-peptide (the latter serving as a marker of beta-cell function). METHODS: The study included T2DM patients with confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection who were consecutively admitted to our Institution between 1 October 2020 and 1 April 2021. RESULTS: Patients (n = 74) were categorized into survivors (n = 55) and non-survivors (n = 19). Non-survivors exhibited significantly higher median white blood cell (WBC) count, D-dimer, neutrophil-to-lymphocyte ratio, high-sensitivity C-reactive protein (hsCRP), and procalcitonin levels, as well as significantly lower median serum 25-hydroxyvitamin D [25(OH)D] levels compared to survivors. Non-survivors exhibited significantly higher median admission plasma glucose (APG) values compared to survivors (210 vs. 166 mg/dL; p = .026). There was no statistically significant difference in median values of (random) plasma C-peptide between non-survivors and survivors (3.55 vs. 3.24 ng/mL; p = .906). A significantly higher percentage of patients with an eGFR < 60 mL/min/1.73 m2 was observed in the non-survivor group as compared to the survivor group (57.9% vs. 23.6%; p = .006). A multivariate analysis performed by a logistic regression model after adjusting for major confounders (age, sex, body mass index, major comorbidities) showed a significant inverse association between admission eGFR values and risk of in-hospital mortality (OR, 0.956; 95% CI, 0.931-0.983; p = .001). We also found a significant positive association between admission WBC count and risk of in-hospital mortality (OR, 1.210; 95% CI, 1.043-1.404; p = .011). CONCLUSIONS: Admission eGFR and WBC count predict in-hospital COVID-19 mortality among T2DM patients, independently of traditional risk factors, APG and random plasma C-peptide. Hospitalized patients with COVID-19 and comorbid T2DM associated with impaired kidney function at admission should be considered at high risk for adverse outcomes and death.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Humans , COVID-19/complications , SARS-CoV-2 , Diabetes Mellitus, Type 2/complications , C-Peptide , Retrospective Studies , Glomerular Filtration Rate , Hospital Mortality , Blood Glucose
13.
Microorganisms ; 11(2)2023 Jan 25.
Article in English | MEDLINE | ID: covidwho-2216626

ABSTRACT

There are still conflicting data on the virological effects of the SARS-CoV-2 direct antivirals used in clinical practice, in spite of the documented clinical efficacy. The aim of this monocentric retrospective study was to compare virologic and laboratory data of patients admitted due to SARS-CoV-2 infection from March to December 2020 treated with either remdesivir (R), a protease inhibitor (lopinavir or darunavir/ritonavir (PI)) or no direct antiviral drugs (NT). Viral load variation was indirectly assessed through PCR cycle threshold (Ct) values on the nasopharyngeal swab, analyzing the results from swabs obtained at ward admission and 7 (±2) days later. Overall, 253 patients were included: patients in the R group were significantly older, more frequently males with a significantly higher percentage of severe COVID-19, requiring more often intensive care admission, compared to the other groups. Ct variation over time did not differ amongst the three treatment groups and did not seem to be influenced by corticosteroid use, even after normalization of the treatment groups for disease severity. Non-survivors had lower Ct on admission and showed a significantly slower viral clearance compared to survivors. CD4 T-lymphocytes absolute count assessed at ward admission correlated with a reduced Ct variation over time. In conclusion, viral clearance appears to be slower in COVID-19 non-survivors, while it seems not to be influenced by the antiviral treatment received.

15.
Front Immunol ; 12: 796482, 2021.
Article in English | MEDLINE | ID: covidwho-2123406

ABSTRACT

Background: Vaccination campaign to contrast the spread of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has raised the issue of vaccine immunogenicity in special populations such as people with multiple sclerosis (PwMS) on highly effective disease modifying treatments (DMTs). While humoral responses to SARS-CoV-2 mRNA vaccines have been well characterized in the general population and in PwMS, very little is known about cell-mediated responses in conferring protection from SARS-CoV-2 infection and severe coronavirus disease-2019 (COVID-19). Methods: PwMS on ocrelizumab, fingolimod or natalizumab, vaccinated with two doses of mRNABNT162b2 (Comirnaty®) vaccine were enrolled. Anti-Spike (S) and anti-Nucleoprotein (N) antibody titers, IFN-gamma production upon S and N peptide libraries stimulation, peripheral blood lymphocyte absolute counts were assessed after at least 1 month and within 4 months from vaccine second dose administration. A group of age and sex matched healthy donors (HD) were included as reference group. Statistical analysis was performed using GraphPad Prism 8.2.1. Results: Thirty PwMS and 9 HDs were enrolled. All the patients were negative for anti-N antibody detection, nor reported previous symptoms of COVID-19. Peripheral blood lymphocyte counts were assessed in PwMS showing: (i) reduction of circulating B-lymphocytes in PwMS on ocrelizumab; (ii) reduction of peripheral blood B- and T-lymphocyte absolute counts in PwMS on fingolimod and (iii) normal B- and T-lymphocyte absolute counts with an increase in circulating CD16+CD56+ NK-cells in PwMS on natalizumab. Three patterns of immunological responses were identified in PwMS. In patients on ocrelizumab, anti-S antibody were lacking or reduced, while T-cell responses were normal. In patients on fingolimod both anti-S titers and T-cell mediated responses were impaired. In patients on natalizumab both anti-S titers and T-cell responses were present and comparable to those observed in HD. Conclusions: The evaluation of T-cell responses, anti-S titers and peripheral blood lymphocyte absolute count in PwMS on DMTs can help to better characterize the immunological response after SARS-CoV-2 vaccination. The evaluation of T-cell responses in longitudinal cohorts of PwMS will help to clarify their protective role in preventing SARS-CoV-2 infection and severe COVID-19. The correlation between DMT treatment and immunological responses to SARS-CoV-2 vaccines could help to better evaluate vaccination strategies in PwMS.


Subject(s)
B-Lymphocytes/immunology , BNT162 Vaccine/administration & dosage , COVID-19 , Multiple Sclerosis/immunology , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Vaccination , Adult , BNT162 Vaccine/immunology , COVID-19/immunology , COVID-19/prevention & control , Female , Humans , Male , Middle Aged , Multiple Sclerosis/therapy
16.
Biomedicines ; 10(11)2022 Nov 02.
Article in English | MEDLINE | ID: covidwho-2099343

ABSTRACT

Lymphopenia has been consistently reported as associated with severe coronavirus disease 2019 (COVID-19). Several studies have described a profound decline in all T-cell subtypes in hospitalized patients with severe and critical COVID-19. The aim of this study was to assess the role of T-lymphocyte subset absolute counts measured at ward admission in predicting 30-day mortality in COVID-19 hospitalized patients, validating a new prognostic score, the T-Lymphocyte Subset Index (TLSI, range 0-2), based on the number of T-cell subset (CD4+ and CD8+) absolute counts that are below prespecified cutoffs. These cutoff values derive from a previously published work of our research group at Policlinico Tor Vergata, Rome, Italy: CD3+CD4+ < 369 cells/µL, CD3+CD8+ < 194 cells/µL. In the present single-center retrospective study, T-cell subsets were assessed on admission to the infectious diseases ward. Statistical analysis was performed using JASP (Version 0.16.2. JASP Team, 2022, Amsterdam, The Netherlands) and Prism8 (version 8.2.1. GraphPad Software, San Diego, CA, USA). Clinical and laboratory parameters of 296 adult patients hospitalized because of COVID-19 were analyzed. The overall mortality rate was 22.3% (66/296). Survivors (S) had a statistically significant lower TLSI score compared to non-survivors (NS) (p < 0.001). Patients with increasing TLSI scores had proportionally higher rates of 30-day mortality (p < 0.0001). In the multivariable logistic analysis, the TLSI was an independent predictor of in-hospital 30-day mortality (OR: 1.893, p = 0.003). Survival analysis showed that patients with a TLSI > 0 had an increased risk of death compared to patients with a TLSI = 0 (hazard ratio: 2.83, p < 0.0001). The TLSI was confirmed as an early and independent predictor of COVID-19 in-hospital 30-day mortality.

17.
J Chemother ; : 1-7, 2022 Oct 20.
Article in English | MEDLINE | ID: covidwho-2077305

ABSTRACT

Novel therapeutic strategies such as the long-acting lipoglycopeptide antibiotics allow for the treatment and discharge of selected emergency department (ED) patients with Acute Bacterial Skin and Skin Structure Infections (ABSSSI), who require intravenous antibiotics and would otherwise be hospitalized. The COVID-19 pandemic highlighted the need to develop strategies that may reduce hospitalization. The telehealth approach has shown success in remote management of cellulitis patients and could aid in the remote follow up of overall ABSSSI patients. This article describes a study protocol for the telemedicine follow up of patients diagnosed with ABSSSI in the ED, requiring intravenous treatment, receiving a single dalbavancin dose, and directly discharged. A telehealth system for remote follow up is evaluated as well as the possible inclusion of point-of-care ultrasound for the appropriate diagnosis of ABSSSI. The study will be conducted in compliance with regulatory requirements; and all collected data will be kept strictly confidential and in accordance with all relevant legislation on the control and protection of personal information. Dissemination of the study protocol may help increasing knowledge and awareness on this topic, with the aim of optimizing patient management, reducing hospitalization and lower the impact on healthcare associated costs.

18.
Cells ; 11(16)2022 08 10.
Article in English | MEDLINE | ID: covidwho-2032864

ABSTRACT

Neurofilament light chain (NfL) is a specific biomarker of neuro-axonal damage. Matrix metalloproteinases (MMPs) are zinc-dependent enzymes involved in blood-brain barrier (BBB) integrity. We explored neuro-axonal damage, alteration of BBB integrity and SARS-CoV-2 RNA presence in COVID-19 patients with severe neurological symptoms (neuro-COVID) as well as neuro-axonal damage in COVID-19 patients without severe neurological symptoms according to disease severity and after recovery, comparing the obtained findings with healthy donors (HD). Overall, COVID-19 patients (n = 55) showed higher plasma NfL levels compared to HD (n = 31) (p < 0.0001), especially those who developed ARDS (n = 28) (p = 0.0005). After recovery, plasma NfL levels were still higher in ARDS patients compared to HD (p = 0.0037). In neuro-COVID patients (n = 12), higher CSF and plasma NfL, and CSF MMP-2 levels in ARDS than non-ARDS group were observed (p = 0.0357, p = 0.0346 and p = 0.0303, respectively). SARS-CoV-2 RNA was detected in four CSF and two plasma samples. SARS-CoV-2 RNA detection was not associated to increased CSF NfL and MMP levels. During COVID-19, ARDS could be associated to CNS damage and alteration of BBB integrity in the absence of SARS-CoV-2 RNA detection in CSF or blood. CNS damage was still detectable after discharge in blood of COVID-19 patients who developed ARDS during hospitalization.


Subject(s)
Blood-Brain Barrier , COVID-19 , Axons , Humans , RNA, Viral , SARS-CoV-2
20.
J Cell Mol Med ; 26(19): 4940-4948, 2022 10.
Article in English | MEDLINE | ID: covidwho-2019413

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is the novel coronavirus responsible for worldwide coronavirus disease (COVID-19). We previously observed that Angiotensin-converting enzyme 2 (ACE2) and Dipeptidyl peptidase-4 (DPP4) are significantly overexpressed in naso-oropharyngeal swabs (NPS) of COVID-19 patients, suggesting their putative functional role in the disease progression. ACE2 and DPP4 overexpression in COVID-19 patients may be associated to epigenetic mechanism, such as miRNA differential expression. We investigated if hsa-let7b-5p, reported to target both ACE2 and DPP4 transcripts, could be involved in the regulation of these genes. We verified that the inhibition and overexpression of hsa-let7b-5p matched to a modulation of both ACE2 and DPP4 levels. Then, we observed a statistically significant downregulation (FC = -1.5; p < 0.05) of hsa-let7b-5p in the same COVID-19 and control samples of our previous study. This is the first study that shows hsa-let7b-5p low expression in naso-oropharyngeal swabs of COVID-19 patients and demonstrates a functional role of this miR in regulating ACE2 and DPP4 levels. These data suggest the involvement of hsa-let7b-5p in the regulation of genes necessary for SARS-CoV-2 infections and its putative role as a therapeutic target for COVID-19.


Subject(s)
COVID-19 , MicroRNAs , Angiotensin-Converting Enzyme 2/genetics , COVID-19/genetics , Dipeptidyl Peptidase 4/genetics , Dipeptidyl Peptidase 4/metabolism , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , SARS-CoV-2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL